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Abstract - Neural networks have been applied to two
aspects of sensorless switched reluctance motor
operation. First a neural network is trained to predict
position from inductance and phase current data and
thereby eliminate the position sensor. Second, a neural
network is trained to provide a current reference that
minimises torque ripple. Torque ripple minimisation is
achieved without a torque sensor. A model built in
Matlab is used to simulate the system and show
successful operation provided the training data is well
chosen.

I. INTRODUCTION

The switched Reluctance Motor(SRM) has now become
a promising candidate for various general purpose
adjustable speed applications because of its simplicity
and robustness.

The SRM is controlled by switching the phase currents
in synchronism with the regions of rising inductance of
the stator windings of the motor. As the rotor pole
moves from being unaligned to the aligned with a stator
pole, the inductance of that stator coil varies from a
minimum value to a maximum value. A rotor position
sensor is used for detecting the angular position of the
rotor and the region of inductance increase, and
therefore of current commutation inferred. The position
sensor is a significant contribution to the cost and
complexity, and tend to reduced the reliability of the
drive system.

Besides the drawback of using the position sensor, SRM
is also renowned for its high torque ripple
characteristic. The origin of the torque ripple in an SRM
is the highly non-linear and discrete nature of the torque
production mechanism. The torque ripple is significant
at the commutation instant. The total torque in an SRM
is the sum of torque generated by each of the stator
phases which are controlled independently.

The SRM produces torque on the basis of varying
reluctance along the magnetic circuit. When a stator
phase is energised, the stator pole pair attracts the
closest rotor pole pair toward alignment of the poles.
Torque is produced by this tendency of the magnetic
circuit to adopt a minimum reluctance configuration and
is independent of the direction of the current flow. By

consecutive  energization of successive phases,
continuous rotation in either direction is possible.

The model of the SRM used in the simulation was based
on a trigonometric function for the variation of the
unsaturated inductance with the rotor position and a
hyperbolic function for saturation approximation. The
production of the torque was calculated based on the
rate of change of the co-energy with the rotation angle.
The equations used to obtain a model of the behaviour
of SRM are:

(i) Cosine approximation of unsaturated inductance
variation with rotor position

Lunsat(8) = L min+ (L max— L min).

(-%—(1 ~cos(8. N _rotor_ pole)) Q)

(ii) Saturation approximation for inductance function

L(i,0) = Lsat + (Lunsat(0) — Lsat).
’ @
(sec h[ Lunsat(0) — Lsat z))
psi_sat(0)

(iii) Saturation approximation for flux-linkage function

psi(i,0) = Lsat.i + psi_sat(0).

tanh Lunsat(8) - Lsat i 3
psi_sat(0)

where  @is the rotor position
i is the phase current
N_rotor_pole is number of rotor poles
Lmin is the unsaturated inductance in unaligned
position
Lmax is the unsaturated inductance in aligned
position
Lsat is the saturated value of a winding
inductance

The inductance generated by a single stator phase
winding for various constant currents is plotted as
shown in Figure 1.
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Figure 1: Graph of inductance versus rotor position

II. REVIEW OF PREVIOUS METHODS
1. Position Sensorless Operation

The alternative to a position sensor is indirect rotor
position sensing based on the measurement of motor
parameters. These techniques can be classified into two
board categories :

(i) Non-intrusive methods where position information is
obtained from terminal measurements of voltages
and currents and the associated computations

(ii) Active probing methods where low level high-
frequency signals are injected into an idle phase to
determine the position dependent inductance
characteristic.

2. Torque Ripple Minimisation

Various torque ripple minimisation methods have been
proposed which can be categorised into two main
sections:

(i) Neural network based approach described by Reay et
al (1) and O’Donavan et al (2) where the neural
network is used to approximate the inverse of the
non-linear torque-angle-current characteristic.- or
flux-linkage characteristic. The desired phase
currents for minimum torque ripple production were
obtained from the trained neural network on-line and
off-line respectively

(ii) Phase current optimising approach described by
Schramn et al (3) and Hussain and Ehsani (4) for
smooth torque production is achieved by analytically
optimising the profile of the phase currents.
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The torque ripple minimisation techniques described
above required the use of a rotor position sensor and
also a measurement of torque in Reay et al (1) and
Hussain and Ehsani (3).

III. PROPOSED SENSORLESS OPERATION

Three multi-layer feedforward neural networks are used
to approximate the non-linear functions of é=f(L,i), y=
g(i,8) and i= WT,6) where 6, L, i, T, y are rotor
position, phase inductance, phase current, torque/phase
and flux-linkage/phase respectively.

1. Rotor Position Estimation

A two-hidden-layer neural network with five neurons on
each hidden layer is used to estimate the angular
position & of a 4-phase SRM. The inductance, L of each
the stator phase is a function of the supplied current i
and of the angular position 6. In order to determine the
angular position 6, the neural network is used to
approximate the inverse of the function, ie. to
approximate the mapping of &=f(L,i). Since the angular
position € is dependent on the value of the current and
inductance of each phase, these parameters, i.e. i}, i, i3,
isand L,;, Ly, L3, L; have been chosen as the inputs of the
neural networks. The angular period of the motor
behaviour is defined by the number of rotor poles. In
this simulation, a 8/6 SRM was modelled and therefore
the angular period is 60°. The neural networks was
therefore trained to approximate the rotor position
within the interval 0°-60°. The neural network is trained
off-line to estimate the sine and cosine of rotor position
@ to eliminate any discontinuities that can occur if the
rotor position of 0°-60° were to be estimated directly.
The Levenberg Marquardt training algorithm was used.

2. Torque Ripple Minimisation

A single hidden layer neural network with five hidden
neurons is used to estimate the phase flux-linkage y of
the 4-phase SRM. Since the flux-linkage y is dependent
of the phase current i and also the rotor position 6, the
neural network is trained with these parameters to
estimate the phase flux-linkage y function i.e. y= g(i,6).
Once the neural network is trained, it can be used to
estimate the flux-linkage i, of the other phases with the
respective phase current i, and rotor position 6, of that
phase. As shown by O’Donavan et al (2), the parameters
of the trained flux-linkage neural network can be used to
estimate the torque/phase T. The estimated torque/phase

f,, for each phase of the SRM can be summed to

estimate the overall torque T generated by the SRM.
The activation function of the hidden layer and the
output layer of this neural network have to be a hyper-
tangent sigmoid and linear functions respectively in



order for the T to be evaluated

algebraically.

torque/phase

In order to evaluate torque from flux-linkage for any
phase of the SRM motor, it is necessary to determine the
field co-energy, ®’ from the flux-linkage/phase, y. The
field co-energy, o’ is differentiated with respect to the
rotor position, & to obtain the expression of the
electromagnetic torque/phase, T

o, = j v, di, “
0
dw,
T @ = z
2 600) = = )

where  n is the nth phase of the motor.
The mathematical expression of the flux-linkage w
neural network can be expressed as

N N
y=B,+ zl‘WjTanh(GWje +iW; +B;)
=
B, is the bias at the output layer
W, is the weights at the output layer
B; is the bias at the output layer
Wjs is the weights at the hidden layer
connecting the rotor position input 8
W; is the weights at the hidden layer
connecting the current input /
N is the number of hidden neurons

©6)

where

By substituting equation (6) into (4) and (5) , the
estimated torque can be computed algebraically as

i
j=1

N
>,
- Wj TV;-Tanh(GWje +B;)

A

W.
T= £

Wj VV]—iTanh(BWje +in,- +B j)

)
J=1

This shows that torque/phase T can be estimated from
the parameters of the flux-linkage approximation neural
network after it is well trained.

The Levenberg Marquardt algorithm = which has been
shown to have a fast convergence in function
approximation is used for the training of the neural
network off-line .

A third neural network with two hidden layers of seven
neurons on each hidden layer is chosen to approximate
the non-linear function of i=h(T,6) in order to generate
current reference commands for a given torque. The
estimated torque/phase 7, computed from the flux-
linkage approximation neural network parameters is
used as the training input. The training of this neural
network was accomplished off-line using the Levenberg
Marquardt algorithm.
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In the approach to minimise torque ripple of a SRM,
there are three neural networks which were well trained
to approximate the non-linear function of 6=f(L,i), y=
g(i,6) and i= w(T,0) respectively. This will introduce a
sensorless control of the SRM without the need of rotor
position sensor and the measurement of torque
production. The torque ripple minimisation method is
based on generating a torque contour waveform using
the trigonometry function during the overlapping period
of the torque production for each phase of the SRM. For
a 8/6 SRM, a typical torque contour waveform which is
suitable for this purpose is

f16) = 0.5+ 0.5sin(4.N_rotor_pole. 6) (8)

where  N_rotor_pole is the number of rotor pole
@is the rotor position

This function will produce four cycles of sinusoidal
waveform during the angular period of the motor
behaviour i.e. within 0°-60° with a magnitude between
0-1.

In order to produce a constant overall torque, the
contour function for each phase of the motor is non-zero
only during its positive inductance slope. Therefore, the
choice of the torque contour function for each phase of
the SRM is

f(6) =0.5- 0.5sin(4.N_rotor_pole.0) 6,<6<6,
=1 6,<60<6;
=0.5+ 0.5sin(4.N_rotor_pole.6) 6;<60< 0,
=0 otherwise (9)
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Figure 2 : Torque contour waveform for 4 phases of the
SRM

The torque contour waveform for the four phases of the
SRM for the torque ripple minimisation technique
described in this paper is shown in Figure 2. The sum of
the four phase torque contour is unity. In order to obtain
the desire torque, the torque contour function is multiply
by the desire torque value.
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Each of the phase torque contour waveforms is applied
to the phase current estimation neural network i=
h(f’,e). With the information of the rotor position, this
neural network is able to generated the required current
based on the torque contour waveform. Figure 3 and
Figure 4 show how the three neural networks are
connected to form the complete system.

4P
Control

IV. SIMULATION AND RESULTS

The training data for all three neural networks were
generated by running the motor from standstill to
75rad/s in a normal speed servo simulation. When the
motor reached the steady state at 75rad/s, the speed was
increased to 150rad/s and subsequently, the speed was
reduced to 75rad/s. A total of 100,000 data points were
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collected for each parameter namely, the angular
position 6, the phase inductance L, the phase current, i
phase flux-linkage, y for a simulation time of 10
seconds with a small sample time of 0.1ms. The small
sample time was necessary for the simulation to
generate an accurate result. The training points were
obtained by decimating the original data points by a
factor of 5 and thus reducing the training points to
20,000. This reduced the training time significantly
compared to training with 100,000 data points.

1. Rotor Position Estimation

A two-hidden-layer neural network with five neurons
on each hidden layer was trained to approximate the
mapping of function &=f(L,i). The hyper-tangent
sigmoid activation function was chosen for the two
hidden layers and the linear activation function was
used at output layer. After a training time of
approximately 2 hours, the neural network has
successfully approximated the mapping of 6=f(L,i) with
a sum squared error of 0.995.

The neural network was validated for an increasing
speed of 0-50 rad/s as shown in Figure 5. The neural
network has successfully modelled the required

function.
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Figure 5 : Neural network rotor position estimation
(sine of angular position)

2. Phase Flux-Linkage And Torque Estimation

A single hidden layer neural network with five hidden
neurons is used to estimate the phase flux-linkage

function w= g(i, 6).

After a training time of approximately 45 minutes, the
neural network has managed to approximate the phase
flux-linkage function with a sum squared error of
0.001.
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The neural network was validated for an increasing
speed of 0-50 rad/s as shown in Figure 6. The neural
network has successfully modelled the required
function. The estimated torque was computed with
equation (7) and a mean square error of 0.79 generated
as shown in Figure 7.
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Figure 6: Neural network flux-linkage estimation
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Figure 7: Estimated torque from flux-linkage neural
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3. Phase Current Estimation

A two hidden layer neural network with seven neurons
on each hidden layer is chosen to approximate the non-
linear function of i= h(f‘,G). After a training time of
approximately 1 hour with the Levenberg Marquardt
algorithm, the neural network has successfully to
approximate the required function with a sum squared
error of 2.05.

The neural network was validated for an increasing
speed of 0-50 rad/s as shown in Figure 8. The neural
network has successfully modelled the non-linear

function of i= h(f‘ ,0).



4. Torque Ripple Minimisation

The result of the torque ripple minimisation is shown in
Figure 9 for an increasing speed of 0-40 rad/s. The
maximum torque reference was set to 20Nm.
Therefore, within the acceleration period the torque
demanded by the SRM was maintained at this value.
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Figure 8: Neural network phase current estimation
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V. DISCUSSION

The torque ripple observed at Figure 9 is largely
contributed by the error generated in the prediction of
the rotor position. Within each interval of the electrical
cycle of the rotor position i.e. 0°-60° of mechanical
degree, there are three significant errors which occurred
at the unaligned, aligned and the mid point between the
two. This is shown in Figure 10. Even though the rotor
position neural network was trained to a small sum
square of 0.995, this error occurred because the
network was not trained with a wide enough set of
training data.
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In general, the neural networks were able to
approximate the non-linear functions of rotor position,
flux-linkage and phase current. The neural networks
chosen in this simulation have relatively small number
of hidden neurons with the maximum number being
seven in the phase current estimation neural network.
This will allow a fast recall time to be achieved when
the sensorless control system is implemented in
practical.
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Figure 10: Error in rotor position prediction

VI. CONCLUSION

The proposed sensorless control system havs shown
that torque ripple minimisation can be achieved without
a rotor position sensor. In simulation it was shown that
it is important to achieve good position prediction
accuracy before attempting torque ripple minimisation.
A proper training data pattern should be chosen for the
neural network during its training phase in order to
achieve the generality of the non-linear functions of the
SRM.
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